Lung cancer exosomes initiate global long non-coding RNA changes in mesenchymal stem cells.

نویسندگان

  • Shihua Wang
  • Xiaoxia Li
  • Rongjia Zhu
  • Qin Han
  • Robert Chunhua Zhao
چکیده

Mesenchymal stem cells (MSCs) can be attracted to tumor sites and become an important component of the tumor microenvironment, thus contributing to tumor development. Emerging evidence suggests that tumor cells could transfer genetic information into MSCs through the release of exosomes. However, the molecular mechanisms by which tumor exosomes contribute to interactions between MSCs and tumor cells remain largely unknown. In this study, we found that lung tumor cell derived exosomes could inhibit MSCs osteogenic and adipogenic differentiation. We then investigated the involvement of long non-coding RNAs, a new class of regulators, in tumor exosome treated MSCs by a comprehensive lncRNA and mRNA profiling. lncRNAs (9.1%) (2775 out of 30586) and 9.3% of protein-coding mRNA (2439 out of 26109) were differentially expressed (fold-change ≥2; P-value ≤0.05) in lung tumor cell exosome treated MSCs. Furthermore, we characterized the differentially expressed lncRNAs through their classes and length distribution and correlated them with differentially expressed mRNA. Noteworthy, GO analysis of biological process showed that upregulated mRNAs were enriched in mRNA metabolic process, while downregulated ones were enriched in detection of mechanical stimulus involved in sensory perception. Pathway analysis indicated that 32 pathways were upregulated while 7 were downregulated in A549 exosome treated MSCs. Here, we are the first to determine genome-wide lncRNA expression patterns in exosome treated MSCs by microarray and the results will bring new insights into the mechanisms underlying interactions between tumor cells exosomes and its environmental component the MSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

SOX2OT, a long non-coding RNA involved in autophagy regulation

Summary: SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA associated with cancer pathogenesis. It contributes to a variety of cellular functions and recent evidence propounds its association with autophagy process. It has been showed that SOX2OT can regulate the expression of different autophagy associated factors in human cells with different mechanisms, however more remains to ...

متن کامل

Linkage between Large intergenic non-coding RNA regulator of reprogramming and Stemness State in Samples with Helicobacter pylori Infection of Gastric Cancer Cells

Background: Long noncoding RNAs (lncRNAs), as non-protein coding transcripts, play key roles in tumor progression and stemness state in many malignancies, as their aberrant expression has been found in gastric cancer (GC) as one of the most common cancer worldwide. LINC-ROR (large intergenic noncoding RNA regulator of reprogramming) identified as an involved lncRNA in human malignancies, howeve...

متن کامل

WDR7 up-regulation upon knocking down of neighboring non-coding RNA using siRNAs encapsulated in polyamidoamine dendrimers

Objective(s): Breast cancer is the second leading cause of cancer death in females. Understanding molecular mechanisms in cancer cells compared with normal cells is crucial for diagnostic and therapeutic strategies. Long intergenic non-protein coding RNA, a regulator of reprogramming (lincRNA-RoR) is a noncoding RNA which initially was detected in induced pluripotent s...

متن کامل

Exosomes: Mediators of Immune Regulation

Extracellular Vesicles, including exosomes, are small membrane fragments released from many cell types, like Mesenchymal Stem Cells (MSCs). They were recognized as a mechanism of intercellular communication. They can transfer proteins, lipids and nucleic acids to other cells. Thus, they have many physiological (angiogenesis, coagulation and tissue repair, etc.) and pathological (e.g. in autoimm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 48 2  شماره 

صفحات  -

تاریخ انتشار 2016